TCXO ME32T nA Current 32.768 KHz ± 5 ppm -40 to 85 °C **CMOS** **SMD** 15 pF 1.8 V 2.5 V 3.3 V 5.0 V 3.0 V ## **Features** - CMOS 32.768 KHz TCXO with a maximum frequency stability of \pm 5 ppm (±2.62 minutes / year) over -40 to +85°C, providing a much better timekeeping accuracy than the competition - A proprietary temp. compensation technique is applied to the built-in 32.768 KHz tuning fork crystal & temp. sensor - A 1.5 μA typical current consumption makes it ideal for battery-operated devices. - 3.28 x 2.5 x 1.3 mm ceramic SMD package, ideal for new miniaturizing applications ## Applications: - If temperature compensation is not required, please use Mercury's "HG57" series (nA current consumption) or "HA" series (mA current consumption) ## General specifications of all available packages, at Ta=+25°C, CL=15pF | Output Wave Form | | | Square wave [CMOS] | | | | | |---|--|--------------|--|-----------|-----------|------------|---------| | Nominal Frequency | | | 32.768 KHz | | | | | | Standard Supply Voltages V _{DD} | | 1.8 ± 5 % | 2.5 ± 5 % | 3.0 ± 5 % | 3.3 ± 5 % | 5.0 ± 10 % | | | (Custom V _{DD} is also available) | | Voltage code | 18 | 25 | 3 | 33 | 5 | | Power Supply Current (lcc) (typical) | | | 0.79 uA | 1.05 uA | 1.25 uA | 1.37 uA | 2.05 uA | | Initial Calibration Tolerance | | | \pm 1.5 ppm (max.) at T _{amb} = +25 $^{\circ}$ C \pm 3 $^{\circ}$ C | | | | | | | | | ± 3.8 ppm (-10°C to +60°C) | | | | | | Frequency Stability over Temperature (max.) | | | ± 5 ppm (-40°C to +85°C) | | | | | | | | | ± 8 ppm (-40°C to +105°C) | | | | | | Timing error over time [± 5 ppm (-40°C to +85°C)] | | | ± 0.432 sec/day ; ± 12.960 sec/month ; ± 2.628 minutes / year , w.r.t fo at +25°C. | | | | | | Frequency
Stability | vs Aging | | ± 3.0 ppm / year (max.) first year at +25° C | | | | | | | vs V _{DD} Tolerance Change | | \pm 0.2 ppm (max.) for a \pm 5 % input voltage change | | | | | | | vs Load Change | | ± 0.2 ppm (max.) for a ± 10 % loading condition change | | | | | | | vs Reflow | | ± 1.0 ppm (max.) 1 reflow and measured 24 hours afterwards | | | | | | | vs all range of V_{DD} ($\triangle f / V$) | | \pm 1.0 ppm / volt (max.) V_{DD} = 1.7 V to 5.5 V . | | | | | | Output Logic / Output Load | | | CMOS / 15 pF | | | | | | Supply Voltage Variation ($\triangle V_{DD}$) | | | 0.25 V (max.) Condition : \triangle V / \triangle t = 1 V / us | | | | | | Output Voltage Level V _{OH} | | | V_{DD} - 0.4 V (min.) ; I_{OH} = 0.1 mA , all V_{DD} range | | | | | | Output Voltage Level V _{OL} | | | 0.4 V (max.) ; I_{OL} = - 0.1 mA , all V_{DD} range | | | | | | Start - up | Time | | 1 sec. (max.) at +25°C ; 3 sec. (max .) over -40°C to +85°C | | | | | | Rise Time | e and Fall Time | | 100 nano. sec. max. Measured at 20% ←→ 80% of the waveform , 15 pF load. | | | | | | Duty Cyc | le | | 50% ±10% typical | | | | | | Pad 1 OE | Thresholds | | $Vih = 0.8 * V_{DD}$, $Vil = 0.2 * V_{DD}$; Open connection prohibit | | | | |